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The quantum resonances �QRs� of the kicked particle are studied in a most general framework by also
considering arbitrary periodic kicking potentials. It is shown that QR can arise, in general, for any rational
value of the Bloch quasimomentum. This is illustrated in the case of the main QRs for arbitrary potentials. In
this case, which is shown to be precisely described by the linear kicked rotor, exact formulas are derived for the
diffusion coefficients determining the asymptotic evolution of the average kinetic energy of either an incoher-
ent mixture of plane waves or a general wave packet. The momentum probability distribution is exactly
calculated and studied for a two-harmonic potential. It clearly exhibits additional resonant values of the
quasimomentum and it is robust under small deviations from QR.
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I. INTRODUCTION

There has recently been a considerable experimental �1�
and theoretical �2,3� interest in new remarkable phenomena
associated with the quantum resonances of the periodically
kicked particle �KP�, either in the presence or in the absence
of gravity. In this paper, we present general results concern-
ing the quantum resonances of the KP in the absence of
gravity. These results extend some previous ones in works
�2,3� in a significant way, shedding light on basic aspects of
the problem and connecting an important case of the system
with a well-known model. We start with a brief summary of
previous results �2,3�, using notation in Ref. �3�. The quan-
tum KP is described by the Hamiltonian

Ĥ =
p̂2

2
+ kV�x̂��

t

��t� − t�� , �1�

where �x , p� are the position and momentum of the particle, k
is a nonintegrability parameter, V�x� is a periodic potential, t
takes all the integer values, t� is the continuous time, and � is
the kicking period. The units are chosen so that the particle
mass is 1, the Planck’s constant �=1, and the period of V�x�
is 2�. In practice, V�x� has been always chosen as the stan-
dard potential V�x�=cos�x�. The one-period evolution opera-
tor for �1�, from t�= t+0 to t�= t+�+0, is given by

Û = exp�− ikV�x̂��exp�− i�p̂2/2� . �2�

The translational invariance of �2� in x̂ implies the conserva-
tion of a quasimomentum � �0���1�: The application

of Û on a Bloch function 	��x�=exp�i�x�
��x�, where

��x+2��=
��x�, results in a Bloch function 	���x�
=exp�i�x�
���x� associated with the same value of �. Here


���x� is the 2�-periodic function 
���x�= Û�
��x�,where

Û� = exp�− ikV�x̂��exp�− i��p̂ + ��2/2� . �3�

The restriction of the operator �3� to 2�-periodic functions

��x� allows one to interpret x as an angle � and p̂ as an

angular-momentum operator N̂=−id /d� with integer eigen-

values n. One can then view �3� as the one-period evolution
operator for a “�-kicked rotor” ��-KR�. Now, an arbitrary
KP wave packet 	�x� can be always expressed as a super-
position of Bloch functions, 	�x�=�0

1d� exp�i�x�
��x�,
where


��x� =
1

�2�
�

n

	̃�n + �� exp�inx� , �4�

	̃�p� being the momentum representation of 	�x�. One then
gets the basic relation

Ût	�x� = �
0

1

d�exp�i�x�Û�
t 
��x� �5�

for integer “time” t, connecting the quantum dynamics of the
KP with that of �-KRs.

For typical irrational values of � / �2��, �-KRs are ex-
pected to feature dynamical localization in the angular mo-
mentum n �4,5�, implying a similar localization of the KP

wave packet 	̃�p� in the momentum p=n+� �n and � are,
respectively, the integer and fractional parts of p�. If � / �2��
is rational, the usual ��=0� KR exhibits quantum resonance
�QR�, i.e., a ballistic �quadratic in time� growth of its kinetic
energy �5�. QR in general �-KRs appears to have been stud-
ied only in the case of integer � / �2�� �“main” QRs� with
V�x�=cos�x� �2,3�. It was found �3� that QR arises in this
case only for special “resonant” values of �, finite in number.

Thus, QR is exhibited by the KP only if 	̃�p� is delta local-
ized on the discrete set of momenta p=n+�, with � in the
finite resonant set. However, QR leaves a clear fingerprint in
the evolution of either a general KP wave packet �5� or an
incoherent mixture of plane waves: In both cases, which in-
volve all values of �, the average kinetic energy grows dif-
fusively �linearly� in time �2,3�. This diffusive behavior is
robust under small deviations � of � / �2�� from integers, in
the sense that it is still observed on time scales t 	k�	−1/2 �3�.

In this paper, the results above concerning the QRs of the
system �1� are extended by also considering arbitrary peri-
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odic potentials V�x�. In Sec. II, we show that the general
condition for QR in �-KRs is just the rationality of both
� / �2�� and �. Thus, a resonant value of � may be a general
rational number in �0,1� and one then has a �countable�
infinity of such values. This is illustrated in Sec. III in the
case of the main QRs for arbitrary V�x�. We show that this
case is precisely described by the well-known linear kicked
rotor �linear KR� �9,10�. We focus on this case also in Secs.
IV and V. In Sec. IV, we derive exact formulas for the diffu-
sion coefficients determining the asymptotic evolution of the
average kinetic energy of either an incoherent mixture of
plane waves or a general KP wave packet. For a mixture
uniformly distributed in �, the formula essentially coincides
with one given by Berry in the context of the linear KR �10�.
Multi-harmonic potentials cause the diffusion coefficient for
a general wave packet to be explicitly dependent on quantum
correlations reflecting the localization features of the initial
wave packet in momentum space. In Sec. V, the momentum
probability distribution is exactly calculated and studied for a
two-harmonic potential. It clearly exhibits additional reso-
nant values of � due to the second harmonics and it is found
numerically to be robust under small deviations of � / �2��
from integers. A summary and conclusions are presented in
Sec. VI.

II. GENERAL QR CONDITIONS

The basic origin of QR is a band quasienergy �QE� spec-
trum due to some translational invariance in phase space. For
KR systems, this is the invariance of the evolution operator

under translations T̂q=exp�−iq�̂� by q in the angular momen-

tum N̂ �5,6�; here q must be an integer since � is an angle
�0���2��. The translational invariance of �-KRs is ex-

pressed by �Û� , T̂q�=0, where Û� is given by Eq. �3�
�x̂→ �̂, p̂→ N̂�. Using the fact that N̂ has integer eigenvalues,

one easily finds that �Û� , T̂q�=0 is satisfied only if

�

2�
=

l

q
, �6�

� =
r

l
−

q

2
mod�1� , �7�

where l and r are integers. Equation �6� is the rationality
condition for � / �2�� while Eq. �7� is a formula for the gen-
eral resonant values of �. For definiteness and without loss
of generality, we assume that l and q are positive. Let us now
write l=gl0 and q=gq0, where l0 and q0 are coprime positive
integers and g is the greatest common factor of �l ,q�; the
value of � / �2��= l0 /q0 will be kept fixed in what follows. It
is then clear that � in Eq. �7� can take any rational value �r
in �0,1� since g can always be chosen so that r= ��r

+gq0 /2�gl0 is an integer. For given �=�r, we shall choose g
as the smallest positive integer satisfying the latter require-
ment, so as to yield the minimal values of l=gl0 and q
=gq0. In general, g�1, so that �l ,q� are not coprime. For the
usual KR ��=0�, g=1 if l0q0 is even and g=2 if l0q0 is odd

�compare with Ref. �6��. We denote �r by �r,g, where the
integer r= ��r+gq0 /2�gl0 labels all the different values of �r

for given minimal g.
The QE states � for �=�r,g can be chosen as simulta-

neous eigenstates of Û� and T̂q: Û��=exp�−i���, T̂q�
=exp�−iq���, where � is the QE and � is a “quasiangle,”
varying in the “Brillouin zone” �BZ� 0���2� /q. One may
view the Bloch function exp�i�x���x� as a state on the
“quantum torus” 0�x�2�, 0� p�q, with toral boundary
conditions �7� specified by �� ,��. Using standard methods
�5,6�, it is easy to show from the eigenvalue equations above
that at fixed � one has precisely q QE eigenvalues �b�� ,��,
b=0, . . . ,q−1. Since q=gq0 is minimal, the BZ is maximal
for the given value of �=�r,g. Then, as � is varied continu-
ously in the BZ, the q eigenvalues form q QE bands. These
bands are expected to be, typically, not all flat �with zero
width�; QR can then arise and �=�r,g is indeed a resonant
value. In the nontypical case that all the bands are flat,
�=�r,g is nonresonant: QR is replaced by a bounded quan-
tum motion, the “quantum antiresonance” �8�.

III. CASE OF MAIN QRs: CONNECTION
WITH THE LINEAR KR

Previous studies �2,3� have focused on the important case
of the main QRs ��=2�l0, q0=1�, assuming that V���
=cos���. It was found �3� that only l0 values of � are reso-
nant �exhibit QR�. They are given by Eq. �7� with
r=0,1 , . . . , l0−1 and g=1 �i.e., l= l0 and q=1�. In this sec-
tion, we study the main QRs for arbitrary V��� and we show
that all rational values of � in �0,1� are resonant if V���
contains all the harmonics. The case of �=2�l0 is the only

one in which the term �N̂+��2 in Eq. �3� �x̂→ �̂, p̂→ N̂� can

be replaced by the operator N̂+2�N̂+�2, linear in N̂; this is
because exp�−i�l0n2�=exp�−i�l0n� for the integer eigenval-

ues n of N̂. Then, after omitting the nonrelevant constant
phase factor exp�−i�l0�2�, one can express �3� as follows:

Û� = exp�− ikV��̂��exp�− i��N̂� , �8�

where ��=�l0�2�+1�. We identify Û� in Eq. �8� as the one-
period evolution operator for the well-known linear KR

�9,10� with Hamiltonian Ĥ=��N̂+kV��̂��t=−�
� ��t�− t�; the

corresponding Schrödinger equation is exactly solvable for
arbitrary potential V���,

V��� = �
m

Vmexp�− im�� . �9�

Assuming the quantum state of the linear KR to be initially
�at t=0� an angular-momentum state, 
�,0���
=exp�in0�� /�2�, the expectation value of the kinetic energy
at time t is given by the exact expression �10,11�:
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En0,��t� =
1

2


�,t	N̂2	
�,t� =

n0
2

2
+ k2 �

m�0
m2	Vm	2

sin2�m��t/2�
sin2�m��/2�

.

�10�

If � is a typical irrational number, so that also �� / �2��
= l0��+1/2� is such, the QE spectrum of the linear KR is
pure point �9� and En0,��t� in Eq. �10� is a bounded, quasi-
periodic function of time �10�. Consider now a general ratio-
nal value of �=�r,g, given by Eq. �7� with l=gl0, q=gq0
=g, and g minimal �see Sec. II�. It is easy to show that �r,g
can be written, up to a fixed integer shift in r by gl0 /2 if both
g and gl0 /2 are even, as �r,g=r / �gl0�−1/2 mod�1�, where r
and g are coprime; the corresponding value of �� / �2�� is
r /g, up to some additive integer. Then, from work �9�, the
QE spectrum consists of g bands which are all nonflat �i.e.,
�=�r,g is resonant� if there exists at least one integer j�0
such that the Fourier coefficient Vjg in Eq. �9� is nonzero;
otherwise, all the g bands are flat ��=�r,g is nonresonant,
with QR replaced by quantum antiresonance �8��. In fact, if
Vjg�0 for some j�0, one finds from Eq. �10� �with ��

=2�r /g� a ballistic behavior for large t, En0,��t��St2 /2,
where S=k2g2� j j

2 	Vjg	2 �10�. Thus, if V��� contains all the
harmonics �Vm�0 for all m�, all rational values �r,g of � are
resonant.

As a simple example, let V���=cos���+� cos�2��. The
only nonzero coefficients Vm are V±1= 1

2 and V±2=� /2, so
that QR arises only for g=1,2. The resonant � values are
�r,g=r / �gl0�− 1

2 mod�1�, where r=0,1 , . . . , l0−1 for g=1
and r=1,3 , . . . ,2l0−1 for g=2. The values for g=1 are just
the known ones for V���=cos��� �3� while those for g=2 are
new ones, due entirely to the second harmonics. See, how-
ever, note �12�.

IV. ASYMPTOTIC DIFFUSION OF AVERAGE
KINETIC ENERGY

A. Incoherent mixture of plane waves

Let us assume, as in experimental situations �1�, that the
initial KP state is an incoherent mixture of plane waves
exp�ipx� with momentum distribution f�p� sufficiently local-
ized in p. By decomposing p into its integer and fractional
parts, p=n+�, the average kinetic energy of this mixture at

time t can be expressed as Ē�t�=�0
1d��nf�n+��En,�� �t�; here

En,�� �t� is the expectation value of the kinetic energy in the
state evolving from a plane wave. In the case of �=2�l0, on
which we shall focus, En,�� �t� is given by the right-hand side
of Eq. �10� with n0 replaced by p=n+�; this can be easily
seen from Eqs. �18�–�21� in Ref. �10�. As in Ref. �3�,we
define f0���=�nf�n+�� and use the asymptotic �large t� re-
lation

�
0

1

d�f0���
sin2��ml0�� + 1/2�t�
sin2��ml0�� + 1/2��


t

	m	l0
�
r=0

	m	l0−1

f0��r,m� ,

where �r,m=r / �	m 	 l0�− 1
2 mod�1�. We then find that Ē�t� be-

haves diffusively for large t, Ē�t�D0t, where the diffusion
coefficient D0 is given by

D0 =
k2

l0
�

m�0
m	Vm	2 �

r=0

ml0−1

f0��r,m� . �11�

The simple mixture with f�n+��=�n,n0
is uniformly distrib-

uted in �, f0���=1. In this case, Ē�t�=�0
1d�En0,�� �t�, leading

to an exact equality for all times t: Ē�t�= Ē�0�+D0t with
D0=k2 / �4���0

2��dV��� /d��2d�. The latter result was essen-
tially obtained by Berry �10� as the kinetic energy of a linear
KR whose value of � is completely unknown.

B. General wave packet

Next, we consider a general KP wave packet �5�, a “co-
herent mixture” of Bloch waves exhibiting all values of �.
The expectation value of the kinetic energy in 	t�x�
= Ût	�x� is


E�t =
1

2

	t	p̂2		t� 

1

2
�

0

1

d��
0

2�

d��d
�,t���
d�

�2

,

�12�

where the last relation, with 
�,t���� Û�
t 
����, holds for

large t provided that 
E�t is unbounded as t→� �2�. In fact,
we now show that 
E�t exhibits an asymptotic diffusive be-
havior for �=2�l0. In this case, we easily obtain from rela-
tions �8� and �9� that


�,t��� � Û�
t 
���� = exp�− ikV̄�,t����
��� − t��� , �13�

where

V̄�,t��� = �
s=0

t−1

V�� − s���

= �
m

Vm
sin�m��t/2�
sin�m��/2�

exp�− im�� − �t − 1���/2�� .

�14�

As shown in Ref. �2� �Appendix� for V���=cos���, with
straightforward extension to arbitrary V���, the expression
�13� implies that for large t the dominant contribution
of 	d
�,t��� /d�	2 to 
E�t in Eq. �12� is k2 	
���
− t���dV̄�,t��� /d�	2. This contribution can be calculated using
Eq. �14� and a relation following from Eq. �4�:

	
����	2 =
1

2�
�
m

C��m�exp�im�� , �15�

where C��m� are correlations in momentum space,

C��m� = �
n

	̃�m + n + ��	̃*�n + �� . �16�

From Eqs. �14� and �15�, one can write the Fourier expansion

of k2 	
���− t���dV̄�,t��� /d�	2. After inserting this expansion
in Eq. �12�, we get
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E�t 
k2

2 �
m,m��0

mm�VmVm�
* B�m, m�;t� , �17�

where

B�m,m�;t� = �
0

1

d�
sin�m��t/2�
sin�m��/2�

sin�m���t/2�
sin�m���/2�

C��m − m��

�exp�i�m� − m��t + 1���/2� . �18�

We show in the Appendix that the asymptotic behavior of the
quantity �18� for t→� is given by

B�m,m�;t� 
t

2mm�l0
�	m	 + 	m�	 − 	m − m�	�

��
r=0

g�m,m��l0−1

C�r,g
�m − m�� , �19�

where g=g�m ,m�� is the greatest common factor of
�	m 	 , 	m� 	 � and �r,g=r / �gl0�− 1

2 mod�1�, r=0, . . . ,gl0−1. Re-
lations �17� and �19� imply a diffusive behavior of 
E�t for
large t, 
E�tDt. The diffusion coefficient D can be ex-
pressed, after some algebra, as the sum of two terms:

D = DI + DII =
k2

l0
�

m�0
m	Vm	2 �

r=0

ml0−1

C�r,m
�0�

+
2k2

l0
�
m=1

�

�
m�=m+1

�

m Re�VmVm�
* �

��
r=0

g�m,m��l0−1

Re�C�r,g
�m − m��� . �20�

For a potential containing harmonics Vm of sufficiently high
order m, the term DII �on the second and third line of Eq.
�20�� can generally lead to a sensitive dependence of D on
the correlations C��m�, which reflect the profile of the initial
wave packet in momentum space by Eq. �16�. This term
vanishes in some cases, e.g., for V���=cos��� and/or a uni-
form probability distribution 	
����	2 in Eq. �15�. One is then
left with only the first term �DI�, which is completely analo-
gous to the diffusion coefficient �11� for the incoherent mix-

ture; this is because C��0�=�n 		̃�n+��	2 from Eq. �16� and
this is analogous to f0���=�nf�n+��.

V. MOMENTUM PROBABILITY DISTRIBUTION

The momentum probability distribution �MPD� for a KP

wave packet is given by P�p , t�= 		̃t�p�	2, where 	̃t�p� is the
momentum representation of the wave packet at time t. At
fixed �, P�n+� , t� is the angular-momentum �n� distribution
for a �-KR. Under QR conditions and for resonant �, the
motion of the �-KR is ballistic in n, so that the width �n�t�
of P�n+� , t� increases much faster than that for a nonreso-
nant � �for most values of �, �n�t� is expected to be essen-
tially bounded due to dynamical localization�. Thus, if p and
t are sufficiently large, P�p , t� is almost zero except for nar-

row peaks around p=n+�r,g, for all resonant values �r,g of
�. The diffusion coefficient �20� is the average of
P�p , t�p2 / �2t� over p in the limit of t→�; the only nonzero
contributions to this average come from the resonant peaks.
The contribution of all the peaks with fixed �r,g=�r�,g� is
precisely the contribution of all the terms with �r,m=�r�,g�
and/or �r,g=�r�,g� in formula �20�.

We now study the MPD for �=2�l0 and V�x�=cos�x�
+� cos�2x� �see also the end of Sec. III�. From relation �4�,
	̃t�n+�� are just the Fourier coefficients of �2�
�,t��� and,
for �=2�l0, 
�,t��� can be calculated using relation �13�. We

assume an initial wave packet 	̃�p� satisfying 	̃�p�=1 for

0� p�1 and 	̃�p�=0 otherwise. This corresponds, by rela-
tion �4�, to a uniform 
����, 
����= �2��−1/2 for all �. Rela-

tion �13� then implies that �2�
�,t���=exp�−ikV̄�,t����.
Since only terms with 	m 	 =1,2 appear in the sum �14�, the

Fourier coefficients of exp�−ikV̄�,t���� can be easily ex-
pressed, essentially, as a convolution of ordinary Bessel
functions Jn�·� in the index n.We finally obtain the exact
expression

P�p = n + �,t� = � �
m=−�

�

imJn−2m�k1��,t��Jm�k2��,t����2

,

�21�

where kj�� , t�=k sin�j��t /2� / sin�j�� /2�, j=1,2, and ��

=�l0�2�+1�. Let us consider some behaviors of �21� for �
=�r,g, where �r,g �g=1,2� are the resonant values of � de-
termined in Sec. III: �a� For �r,1=r / l0− 1

2 mod�1�, r
=0,1 , . . . , l0−1, one has 	k1��r,1 , t� 	 = 	k2��r,1 , t� 	 =kt. Now,
the Bessel function Jm�x� is relatively small for 	m 	 � 	x	 and,
for 	x 	 �1, J0�x�=O�1� �13�. We then see that on the time
scale t�T�= 	k�	−1 one can approximate �21� at p=n+�r,1
by P�p , t��Jn

2�kt�. Thus, the most prominent g=1 peaks of
the MPD for t�T� are those with 	n 	 � 	kt	. As �→0 �T�

→ � �, the expression �21� reduces exactly to P�p , t�
=Jn

2�k1�� , t�� �see note �14��. �b� For �r,2=r / �2l0�
− 1

2 mod�1�, r=1,3 , . . . ,2l0−1, one has 	k1��r,2 , t� 	 =k or 0
for t odd or even, respectively, and 	k2��r,2 , t� 	 =kt. Then, if
	k 	 �1, Jn−2m�k1��r,2 , t�� is relatively small for 	n−2m 	 �1
and one can approximate �21� at p=n+�r,2 by P�p , t�
�J�n/2�

2 �k�t�, where �n /2� is the integer part of n /2. The new
�g=2� peaks thus start to emerge in a significant way when
t� 	k�	−1 and, for 	n 	 �2 	k�t	, their magnitude should be
comparable to that of the g=1 ones. All these behaviors are
illustrated in Fig. 1 for �=2� �l0=1�, t=100, k=0.1, �=0
�Fig. 1�a��, and �=0.2 �Fig. 1�b�, with 2 	k�t 	 =4�. We have
checked numerically for many values of �t ,k ,�� that the
MPD is robust under sufficiently small perturbations of �,
�=2�+�, at least within the domains of p where the princi-
pal peaks above are found. As an example, compare Fig. 1�c�
with Fig. 1�b�.

VI. SUMMARY AND CONCLUSIONS

In conclusion, the results in this paper should provide
insights into the nature of the spectra and quantum dynamics
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of the KP under general QR conditions and for arbitrary
potentials. As a direct consequence of translational invari-
ance, any rational value of the Bloch quasimomentum � may
be resonant �exhibits QR�. At fixed � / �2��= l0 /q0 �l0 and q0

are coprime integers�, a rational � is characterized by an
integer pair �r ,g� which determines � through Eq. �7�, with
l=gl0 and q=gq0 assuming their minimal values. The QE
spectrum consists of q=gq0 bands which should be, typi-
cally, not all flat, implying QR. By slightly varying � on the
rationals, the corresponding value of g changes erratically,
leading to similar changes in the QE spectrum. The impor-
tant case of the main QRs �q0=1� is precisely described by
the linear KR and is thus exactly solvable. In this case, all
rational values of � are indeed resonant for generic potentials
containing all the harmonics. In general, the resonant values
of � correspond to peaks in the momentum probability dis-
tribution �see Fig. 1� and appear explicitly in the formulas
�11� and �20� for the diffusion coefficients. Formula �20�
implies a general phenomenon for multi-harmonic potentials
�thus excluding the standard case of V�x�=cos�x��: a sensi-
tive dependence of the diffusion coefficient on the specific
localization features of the initial wave packet in momentum
space. Assuming the robustness of our results under small
variations of �, which was numerically verified for a two-
harmonic potential, it may be possible to observe this phe-
nomenon in experimental realizations of the system. While
high-order �q0�1� QRs appear to be presently beyond ex-
perimental observation, an interesting question is whether
cases of such QRs are exactly solvable, at least to some
extent, for the �-dependent QE spectra and quantum dynam-
ics. We do not have yet a definite answer to this question. We
hope that we shall be able to make some progress in this
direction in future works.
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APPENDIX

We derive here the asymptotic behavior �19�. The domi-
nant contributions to the integral �18� come from small �
intervals around the zeros of the denominator of the inte-
grand. We show below that the behavior �19� is completely
due to the simultaneous zeros of sin�m�� /2� and sin�m��� /2�
�m ,m��0�, ��=�l0�2�+1�. The zeros of, say, sin�m�� /2�
are �=�r,m=r / �	m 	 l0�− 1

2 mod�1�, r=0, . . . , 	m 	 l0−1. Writ-
ing m=gm0 and m�=gm0�, where m0 and m0� are coprime
integers and g=g�m ,m�� is the greatest common factor of
�	m 	 , 	m� 	 �, it is easy to see that there are precisely gl0 si-
multaneous zeros, given by �=�r,g=r / �gl0�- 1

2 mod �1�,
r=0, . . . ,gl0−1.

Thus, let �̄=�r,m be a zero of sin�m�� /2� which is not a
zero of sin�m��� /2�, 	m� 	 � 	m	, and consider a � interval

I�= ��̄−� , �̄+�� sufficiently small that no zero of
sin�m��� /2� lies within it. We show that the contribution of
I� to �18� is finite in the limit of t→�. Let 	m 	�l0��1, so

that sin�m�� /2���−1�rm�l0��− �̄� in I�. We assume that the
correlation function �16� can be expanded as a Taylor series

around �= �̄: C��m�=C�̄�m�+C
�̄
��m���− �̄�+¯. The domi-

nant contribution of I� to �18� is then approximately given by

B�I�� �
�− 1�rC�̄�m − m��

m�l0
�

�̄−�

�̄+�
d�

sin�m��t/2�

� − �̄

sin�m���t/2�
sin�m���/2�

�exp�i�m� − m��t + 1���/2� . �A1�

We introduce the variable z=�l0��− �̄�t and define z̄

=�l0��̄+1/2�t. For t��−1, one can see that B�I�� in Eq. �A1�
is well approximated by

B�I�� �
�− 1�r�t+1�C�̄�m − m��

m�l0 sin�m���̄/2� �
−�

� dz

z
sin�mz�sin�m��z + z̄��

�exp�i�m� − m��z + z̄�� . �A2�

The integral in Eq. �A2� can be calculated exactly using
simple trigonometry and formulas �3.741.2� and �3.763.2� in
Ref. �13�; its value is finite for all z̄ �or t�.

Let us therefore consider a simultaneous zero �=�r,g of

FIG. 1. �Color online� Momentum probability distribution �21�
for t=100, k=0.1, and �a� �=2�, �=0; �b� �=2�, �=0.2; and �c�
�=2�+� ��=���5−1� /1200�0.0032�, �=0.2. All the resonant
peaks for �=0 �in �a�� are at p=n+ 1 � 2. For �=0.2 �in �b� and �c��,
new peaks appear at integer p=n.
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sin�m�� /2� and sin�m��� /2�, denoting it again by �̄. The
interval I� is defined as above with �l0��min�	m	−1 , 	m�	−1�.
The contribution of I� to �18� is, approximately,

B�I�� �
�− 1�r�m0+m0��

mm��2l0
2 �

�̄−�

�̄+�
d�

sin�m��t/2�sin�m���t/2�

�� − �̄�2

�C��m − m��exp�i�m� − m��t + 1���/2� , �A3�

where m0 and m0� are the integers defined above. Expanding

again C��m−m�� as a Taylor series around �= �̄, we see that

the first-order term C
�̄
��m−m����− �̄� in this expansion gives

a contribution to �A3� which is similar to �A1� and is thus
finite for all t. The contributions of higher-order terms are,
obviously, also finite for all t. After simple algebra, one can
easily verify that the contribution B�0��I�� of the zeroth-order
term C�̄�m−m�� is well approximated, for t��−1, by

B�0��I�� �
C�̄�m − m��t

mm��l0

��
−�

�

dzz−2sin�mz�sin�m�z�cos��m − m��z� ,

�A4�

where the variable z was defined above. By expressing the
product sin�m�z�cos��m−m��z� as a sum, the integral in Eq.
�A4� can be calculated exactly using formula �3.741.3� in

Ref. �13�. The final result, with �̄=�r,g, is

B�0��I�� �
t

2mm�l0
�	m	 + 	m�	 − 	m − m�	�C�r,g

�m − m�� .

�A5�

Summing �A5� over all the gl0 simultaneous zeros �=�r,g of
sin�m�� /2� and sin�m��� /2�, we obtain the asymptotic
behavior �19�.
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